definable$551820$ - significado y definición. Qué es definable$551820$
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es definable$551820$ - definición

Definable sets

Definable set         
In mathematical logic, a definable set is an n-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation.
Definable         
WIKIMEDIA DISAMBIGUATION PAGE
Combinatorial definability; Undefinable; Indefinable; Definability; Definabilities; Definably; Definables; Definable (disambiguation); Definability (disambiguation)
·adj Capable of being defined, limited, or explained; determinable; describable by definition; ascertainable; as, definable limits; definable distinctions or regulations; definable words.
Ordinal definable set         
A SET THAT CAN BE DEFINED IN TERMS OF A FINITE NUMBER OF ORDINALS BY A 1ST-ORDER FORMULA
Hereditarily ordinal definable; V=OD; V=HOD; Ordinal definable; Ordinal-definable; Ordinal-definable set
In mathematical set theory, a set S is said to be ordinal definable if, informally, it can be defined in terms of a finite number of ordinals by a first-order formula. Ordinal definable sets were introduced by .

Wikipedia

Definable set

In mathematical logic, a definable set is an n-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation.